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bLaboratoire de Physique Théorique, Univ. Paris-Sud and CNRS,

Bat 210, F-91405 Orsay, France
cCPhT, Ecole Polytechnique, CNRS,

91128 Palaiseau Cedex, France

E-mail: marco.bianchi@mib.infn.it, silvia.penati@mib.infn.it,

alberto.romagnoni@cpht.polytechnique.fr, massimo.siani@mib.infn.it

Abstract: Renormalizable nonanticommutative SYM theories with chiral matter in the

adjoint representation of the gauge group have been recently constructed in [arXiv:

0901.3094]. In the present paper we focus on the U∗(1) case with matter interacting through

a cubic superpotential. For a single flavor, in a superspace setup and manifest background

covariant approach we perform the complete one-loop renormalization and compute the

beta-functions for all couplings appearing in the action. We then generalize the calcula-

tion to the case of SU(3) flavor matter with a cubic superpotential viewed as a nontrivial

NAC generalization of the ordinary abelian N = 4 SYM and its marginal deformations.

We find that, as in the ordinary commutative case, the NAC N = 4 theory is one-loop

finite. We provide general arguments in support of all-loop finiteness. Instead, deforming

the superpotential by marginal operators gives rise to beta-functions which are in general

non-vanishing. We study the spectrum of fixed points and the RG flows. We find that

nonanticommutativity always makes the fixed points unstable.

Keywords: Supersymmetric gauge theory, Superspaces, Non-Commutative Geometry

ArXiv ePrint: 0904.3260

c© SISSA 2009 doi:10.1088/1126-6708/2009/07/039

mailto:marco.bianchi@mib.infn.it
mailto:silvia.penati@mib.infn.it
mailto:alberto.romagnoni@cpht.polytechnique.fr
mailto:massimo.siani@mib.infn.it
http://arxiv.org/abs/0904.3260
http://dx.doi.org/10.1088/1126-6708/2009/07/039


J
H
E
P
0
7
(
2
0
0
9
)
0
3
9

Contents

1 Introduction 1

2 U∗(1) NAC SYM theories 3

3 One flavor case: renormalization and β-functions 7

4 Three-flavor case: renormalization and β-functions 11

5 Finiteness, fixed points and IR stability 14

6 Conclusions 17

A Background field method and Feynman rules 19

1 Introduction

Supersymmetric field theories can be defined on a nonanticommutative (NAC) super-

space [1–5] where the spinorial variables satisfy {θα, θβ} = Fαβ . The nontrivial spinorial

algebra usually breaks supersymmetry down to N = 1/2. The tensor Fαβ has a stringy

origin as the graviphoton field which appears in the N = 2 supergravity multiplet when

taking the zero string length limit.

NAC deformations of supersymmetric field theories have been extensively studied in

four [6]–[16] and lower [17] dimensions. In particular, since supersymmetry is partially bro-

ken a mandatory question is whether these theories maintain the robust renormalizability

properties of their parent anticommutative theories. To this respect all NAC field theories

investigated so far have two common features: 1) Nonanticommutativity is a mechanism of

soft susy breaking; 2) Renormalizable NAC theories are not obtained from their ordinary

parents by simply promoting products to NAC products in the original action but always

require the addition of extra soft terms.

One of the main issues to be addressed is the NAC formulation of gauge theories in in-

teraction with chiral matter. Recently, a renormalizable NAC deformation of SYM theories

with matter in the adjoint representation of the gauge group has been proposed [18]. This

opens the possibility of investigating NAC deformations of SYM theories with extended

supersymmetry. In particular, quantum consistent NAC deformations of N = 4 SYM are

now available which provide the low energy dynamics of a stuck of D3-branes in the pres-

ence of a non-vanishing RR two-form. This is an indispensable ingredient for generalizing

the AdS/CFT correspondence to backgrounds with RR forms turned on in the directions

parallel to the branes.
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As discussed in [18] for the SU(N )⊗U(1) gauge group, adding adjoint matter to a NAC

SYM theory with a non-trivial cubic superpotential leads to a theory which is not simply the

natural generalization of the corresponding ordinary one obtained by promoting products

to ∗-products in the classical action. In fact, the strict interplay between renormalizability

and gauge invariance requires to assign a different coupling constant to the quadratic term

for the abelian matter superfields in order to tune the renormalization of the abelian fields

with the one for the non-abelians. This opens the possibility to add a renormalizable,

N = 1/2 and gauge invariant cubic superpotential. Moreover, it changes the gauge-matter

coupling in vertices where abelian (anti)chirals are present. As a crucial consequence, the

evaluation of one-loop diagrams reveals that only N = 1/2 susy and supergauge invariant

divergent structures get produced. Therefore, a one-loop renormalizable action is obtained

by adding all possible soft susy-breaking and supergauge invariant couplings allowed by

dimensional analysis.

Sufficient evidence for one-loop renormalizability has been given [18], but the complete

renormalization has not been carried out yet. In fact, due to the non-trivial group structure,

the form of the action is quite complicated and the calculation of all one-loop divergent

contributions would imply the evaluation of a large number of diagrams.

In order to avoid technical complications related to the group structure, in this paper

we focus on the U∗(1) case. The noncommutative U∗(1) gauge theory is obtained from the

non(anti)commutative U(N ) theory in the limit N → 1. Despite the abelian nature of the

generator algebra the resulting gauge theory is highly interacting as a consequence of the

non(anti)commutative nature of the ∗-product.

In this case complications related to the different renormalization undergone by non-

abelian and abelian superfields [18] are absent and the general structure of SYM theories

with matter in the adjoint representation of the gauge group is rather simpler.

We first consider the case of a single matter superfield interacting with a cubic su-

perpotential. We complete the one-loop renormalization of the theory and compute the

corresponding beta-functions.

We then generalize the calculation to the case of three adjoint chiral superfields in

interaction through the superpotential

h1

∫
d4xd2θ Φ1 ∗ Φ2 ∗ Φ3 − h2

∫
d4xd2θ Φ1 ∗Φ3 ∗Φ2 (1.1)

+h1

∫
d4xd2θ̄ Φ̄1 ∗ Φ̄2 ∗ Φ̄3 − h2

∫
d4xd2θ̄ Φ̄1 ∗ Φ̄3 ∗ Φ̄2

For h1 = h2, h1 = h2 it exhibits a global SU(3) invariance and can be interpreted as a

nontrivial NAC deformation of the ordinary abelian N = 4 SYM theory. Turning on

nonanticommutativity breaks N = 4 to N = 1/2. More generally, for h1 6= h2 and/or

h1 6= h2 the SU(3) symmetry is lost and the superpotential (1.1) describes the NAC

generalization of a marginally deformed [19, 20] N = 4 SYM theory.

We find that at one-loop the theory with equal couplings is finite exactly like the

ordinary N = 4 counterpart. Using perturbative arguments based on dimensional con-

siderations and symmetries of the theory we provide evidence that the theory should be

– 2 –
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finite at all loop orders. On the other hand, in the presence of marginal deformations UV

divergences arise which in general prevent the theory from being at a fixed point.

Both for the one and three-flavor cases we study the spectrum of fixed points and the

RG flows in the parameter space. We find that nonanticommutativity always renders the

fixed points IR and UV unstable. Compared to the ordinary case, we loose the IR stability

of the fixed point corresponding to the free theory (h = h = 0 and h1 = h2, h1 = h2).

This is due to the fact that in the NAC case the parameter space gets enlarged and new

directions appear which drive the theories away from the fixed point.

The organization of the paper is the following: in section 2 we define U∗(1) NAC SYM

theories with one and three chiral superfields in the adjoint representation of the gauge

group, we discuss their gauge invariance and write their renormalizable actions according

to the results of [18]. In section 3 we present the one-loop renormalization for the case of

a single matter field and the corresponding beta-functions. The same is done for the case

of three chiral superfields in section 4. Finally, in section 5 we discuss the spectra of fixed

points and their stability. Conclusions follow plus an appendix where all technical details

required by the calculations are collected.

2 U∗(1) NAC SYM theories

N = (1
2 , 0) NAC superspace is spanned by nonanticommutative coordinates (xαα̇, θα, θ̄α̇)

satisfying

{θα, θβ} = 2Fαβ {θ̄α̇, θ̄β̇} = 0 [xαα̇, xββ̇] = [xαα̇, θβ] = [xαα̇, θ̄β̇] = 0 (2.1)

where Fαβ is a 2 × 2 symmetric, constant matrix. This algebra is consistent only in

euclidean signature where the chiral and antichiral sectors are totally independent and not

related by complex conjugation.

The class of smooth superfunctions on the NAC superspace is endowed with the NAC

but associative product

φ ∗ ψ ≡ φe−
←−
∂ αF

αβ−→∂ βψ = φψ − φ
←−
∂ αF

αβ−→∂ βψ −
1

2
F2∂2φ∂2ψ (2.2)

where F2 ≡ FαβFαβ . (Anti)chiral superfields can be consistently defined by the constraints

Dα̇ ∗ φ = Dα ∗ φ = 0, where in chiral representation Dα = ∂α + iθ
α̇
∂αα̇ and Dα̇ = ∂α̇ (we

use conventions of [21]).

U∗(1) supergauge group is defined as the limit of the NAC U(N ) group when N = 1.

Its elements are the chiral and antichiral superfields

g(x, θ, θ̄) = e
iΛ(x,θ,θ̄)
∗ , ḡ(x, θ, θ̄) = e

iΛ̄(x,θ,θ̄)
∗ (2.3)

which satisfy a noncommutative algebra.

Given the non-abelian nature of U∗(1) an adjoint representation can be defined accord-

ing to the following prescription: a chiral superfield φ belongs to the adjoint representation

of the gauge group if under supergauge transformations it transforms as

φ→ φ′ = eiΛ∗ ∗ φ ∗ e
−iΛ
∗ (2.4)

– 3 –
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Equivalently, the transformation law for an antichiral superfield φ̄ in the adjoint represen-

tation reads

φ̄→ φ̄′ = eiΛ̄∗ ∗ φ̄ ∗ e
−iΛ̄
∗ (2.5)

As in the ordinary non-abelian case, supersymmetric U∗(1) NAC Yang-Mills theories

can be described in a manifestly covariant way by introducing a scalar prepotential V in

the adjoint representation of the gauge group transforming as

eV∗ → eV
′

∗ = eiΛ∗ ∗ e
V
∗ ∗ e

−iΛ
∗ (2.6)

Being the theory in euclidean signature, V has to be pure imaginary, V † = −V .

We define gauge covariant derivatives in superspace in the so-called gauge antichiral

representation [21] as

∇A ≡ (∇α,∇α̇,∇αα̇) = (Dα , e
V
∗ ∗Dα̇ e

−V
∗ , − i{∇α,∇α̇}∗) (2.7)

They act on superfields in the adjoint representation according to the prescription

∇ ∗A ≡ [∇, A]∗ = (DA)− i[Γ, A]∗ (2.8)

where the connections are explicitly given by

Γα = 0 , Γα̇ = ieV∗ ∗Dα̇ e
−V
∗ , Γαα̇ = −iDαΓα̇ (2.9)

The corresponding field strengths are defined as ∗-commutators of supergauge covariant

derivatives

W α̇ = −
1

2
[∇α,∇αα̇]∗ , W̃α = −

1

2
[∇

α̇
,∇αα̇]∗ (2.10)

and satisfy the Bianchi’s identities ∇α ∗ W̃α +∇
α̇
∗W α̇ = 0. In terms of gauge connections

they are given by

W α̇ =
i

2
DαΓαα̇ = D2Γα̇ , W̃α =

i

2
∂ α̇

α Γα̇ +
i

2
[∇

α̇
,Γαα̇]∗ (2.11)

Covariantly (anti)chiral superfields can be defined according to [∇α̇,Φ]∗ = 0 and [∇α,Φ]∗ =

0, respectively.

Specializing the results of [18] to the U∗(1) case the most general renormalizable action

for a NAC SYM theory with one self-interacting chiral superfield in the adjoint represen-

tation of the gauge group is given by (for simplicity we consider massless matter)

S =
1

2g2

∫
d4xd2θ̄ W̄ α̇ ∗ W̄α̇

+

∫
d4xd4θ Φ ∗ Φ̄ + h

∫
d4xd2θ Φ3

∗ + h

∫
d4xd2θ̄ Φ̄3

∗

+it1F
αβ

∫
d4xd4θ θ̄2 ∂ α̇

α Γ̄βα̇ ∗ Φ ∗ Φ̄ + t2F
2

∫
d4xd4θ θ̄2 Γ̄αα̇ ∗ Γ̄αα̇ ∗ Φ̄3

∗

+t3F
2

∫
d4xd4θ θ̄2 W̄ α̇ ∗ W̄α̇ ∗Φ ∗ Φ̄

+h3F
2

∫
d4xd4θ θ̄2 Φ ∗ ∇2Φ ∗ ∇2Φ

+h4F
2

∫
d4xd4θ θ̄2 ∇2Φ ∗ Φ ∗ Φ̄2

∗ + h5F
2

∫
d4xd4θ θ̄2 Φ ∗ Φ̄4

∗ (2.12)
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where Φ ≡ eV∗ ∗φ∗e
−V
∗ , Φ̄ = φ are covariantly (anti)chiral superfields expressed in terms of

ordinary (anti)chirals. We choose to indicate explicitly the ∗-product everywhere without

distinguishing the cases where it actually coincides with the ordinary product. For example,

it is easy to see that
∫
d4xd2θ̄ Φ̄3

∗ =
∫
d4xd2θ̄ Φ̄3 up to superspace total derivatives.

We note that in contrast with the SU(N ) ⊗ U(1) case [11] the pure gauge action

contains only the NAC generalization of the standard quadratic term. In fact, it is easy to

see that all the extra terms which need be taken into account in the SU(N ) ⊗ U(1) case

for insuring renormalizability and gauge invariance are identically zero in the U∗(1) limit.

More generally, we consider a theory with three different flavors in the (anti)funda-

mental representation of SU(3), still interacting through a cubic superpotential. Again,

using the results of [18] the most general renormalizable action which respects two global

U(1) symmetries is

S =
1

2g2

∫
d4xd2θ̄ W̄ α̇ ∗ W̄α̇ +

∫
d4xd4θ Φi ∗ Φ̄i

+

∫
d4xd2θ (h1Φ1 ∗Φ2 ∗Φ3 − h2Φ1 ∗Φ3 ∗Φ2)

+

∫
d4xd2θ̄

(
h1Φ̄

1 ∗ Φ̄2 ∗ Φ̄3 − h2Φ̄
1 ∗ Φ̄3 ∗ Φ̄2

)

+it1F
αβ

∫
d4xd4θ θ̄2 ∂ α̇

α Γ̄βα̇ ∗ Φi ∗ Φ̄i + t2F
2

∫
d4xd4θ θ̄2 Γ̄αα̇ ∗ Γ̄αα̇ ∗ Φ̄1 ∗ Φ̄2 ∗ Φ̄3

+t3F
2

∫
d4xd4θ θ̄2 W̄ α̇ ∗ W̄α̇ ∗ Φi ∗ Φ̄i

+h̃3F
αβ

∫
d4xd4θ θ̄2 ∇αΦ1 ∗ ∇βΦ2 ∗ Φ3 + h3F

2

∫
d4xd4θ θ̄2 Φ1 ∗ ∇

2Φ2 ∗ ∇
2Φ3

+h
(=)
4 F

2

∫
d4xd4θ θ̄2

3∑

i=1

∇2Φi ∗ Φi ∗ Φ̄i ∗ Φ̄i

+h
(6=)
4 F

2

∫
d4xd4θ θ̄2

∑

i<j

∇2Φi ∗ Φj ∗ Φ̄i ∗ Φ̄j

+h5F
2

∫
d4xd4θ θ̄2 Φi ∗ Φ̄i ∗ Φ̄1 ∗ Φ̄2 ∗ Φ̄3 (2.13)

in terms of covariantly (anti)chiral superfields Φi, Φ̄i. We note that one extra coupling

h̃3 is allowed in this case which would be trivially zero in the action (2.12), for symmetry

reasons. The two global U(1) charges for the matter superfields are (1,−1, 0) and (0, 1,−1)

respectively, whereas antichiral superfields carry opposite charges.

The two actions are invariant under the following gauge transformations

δΦi = i[Λ,Φi]∗ , δΦ̄i = i[Λ, Φ̄i]∗

δΓαα̇ = [∇αα̇,Λ]∗ , δW α̇ = i[Λ,W α̇]∗ (2.14)

We note that except for the transformation of Γ̄ the right hand sides vanish when Fαβ = 0,

as it should in the ordinary U(1) case (when taking the commutative limit matter in the

adjoint representation of U∗(1) is mapped into U(1) singlets).

– 5 –
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In general, the cubic superpotential of (2.13) is a function of four independent couplings

h1, h2, h1, h2. If we set h1 = h2 and h1 = h2 the action (2.13) has a global SU(3) invariance

which can be thought of as related to the R-symmetry of an ordinary N = 4 SYM theory.

Therefore, we study the theory (2.13) as a non-trivial NAC deformation of the abelian

N = 4 SYM.1 We note that, while the ordinary U(1) N = 4 theory is a free theory of one

vector superfield plus three chiral gauge singlets in the fundamental of SU(3), the NAC

deformation we propose is highly interacting.

More generally, if we set h1 = heiπβ , h2 = he−iπβ and h1 = he−iπβ̄, h2 = heiπβ̄ only

the two global U(1)’s survive and we have the NAC generalization of beta-deformed the-

ories [20]. We note that, being the theory in euclidean space with strictly real matter

superfields, we need take the deformation parameters β, β̄ to be pure imaginary in order to

guarantee the reality of the action. In the ordinary anticommutative case supersymmetric

theories with pure imaginary β have been studied in [23].

Both in the N = 4 case and in its less supersymmetric marginal deformations, super-

symmetry is broken to N = 1/2 by the NAC superspace structure.

In order to perform perturbative calculations we use background field method [21] suit-

ably generalized to the NAC superspace [11]. As a result, at any given order in the loop

expansion the contributions to the effective action are expressed directly in terms of covari-

ant derivatives and field strengths without any explicit dependence on the prepotential V .

We split the Euclidean prepotential as eV∗ → eV∗ ∗ e
U
∗ where U is the background

prepotential and V its quantum counterpart. Consequently, the covariant derivatives (2.7)

become

∇α = ∇∇α = Dα , ∇α̇ = eV∗ ∗ ∇∇α̇ ∗ e
−V
∗ = eV∗ ∗ (eU∗ ∗ D̄α̇ e−U

∗ ) ∗ e−V
∗ (2.15)

Covariantly (anti)chiral superfields in the adjoint representation are expressed in terms of

background covariantly (anti)chiral objects as

Φ = Φ , Φ = eV∗ ∗Φ ∗ e
−V
∗ = eV∗ ∗ (eU∗ ∗ φ ∗ e

−U
∗ ) ∗ e−V

∗ (2.16)

We then split Φ→ Φ+Φq and Φ̄→ Φ̄+Φ̄q, where Φ, Φ̄ are background fields and Φq, Φ̄q

their quantum fluctuations.

We break the invariance under quantum gauge transformations [11, 21] by choosing

gauge-fixing functions f = ∇∇
2
∗V , f = ∇∇2 ∗V , while preserving manifest invariance of the

effective action and correlation functions under background gauge transformations [11, 21].

The ghost action associated to the gauge-fixing is given in terms of background covari-

antly (anti)chiral FP and NK ghost superfields as

Sgh =

∫
d4xd4θ

[
c′c− c′c+ · · ·+ bb

]
(2.17)

In ref. [11] the gauge-fixing procedure for NAC gauge theories has been discussed in

detail. For the present scopes in the appendix we summarize the procedure and collect the

Feynman rules necessary for one-loop calculations.

1At classical level, the NAC generalization of N = 4 SYM theories has been studied in [22] starting from

an action which is the ordinary N = 4 action with products promoted to ∗-products.
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Figure 1. Gauge self-energy diagram.

We work in dimensional regularization, n = 4−2ǫ. All divergent integrals are expressed

in terms of the self-energy integral

S =

∫
dnq

1

q2(q − p)2
=

1

(4π)2
1

ǫ
+O(1) (2.18)

3 One flavor case: renormalization and β-functions

We first concentrate on the theory described by the action (2.12) and perform one-loop

renormalization.

Using Feynman rules listed in the appendix we draw all possible one-loop divergent

diagrams. A useful selection rule arises by looking at the overall power of the NAC param-

eter for a given diagram. In fact, as it is clear from the dimensional analysis of refs. [11, 18]

divergent contributions can be at most quadratic in Fαβ . Since powers of F come from ver-

tices and from the expansion of covariant propagators (see eqs. (A.14), (A.30)) it is easy to

count the overall power of the NAC parameter and withdraw diagrams with too many F ’s.

According to standard D-algebra arguments, in the NAC case as in the ordinary one

divergent contributions to the gauge effective action come only from diagrams with a chiral

matter/ghost quantum loop [11]. For the U∗(1) theory the only potentially divergent

contribution comes from the two-point diagram in figure 1 with interaction vertices arising

from the expansion (A.14) of the covariant chiral propagator. Being the vertices of order F

the result would be of order F2. Since dimensional analysis does not allow for self-energy

divergent contributions proportional to the NAC parameter we expect the divergent part

of this diagram to vanish. In fact, by direct inspection it is easy to see that after D-algebra

it reduces to a tadpole thus giving a vanishing contribution in dimensional regularization.

Therefore, the gauge action does not receive any one-loop contributions. This is consistent

with the result of [11] specialized to the N = 1 case.

We then concentrate on the renormalization of the gauge/matter part of the ac-

tion (2.12). Using Feynman rules in the appendix we select diagrams in figures 2, 3 as

the only one-loop divergent diagrams. Diagrams (2a, 2c, 2d, 2e) are obtained from dia-

gram (3a) by expanding 1/�cov as in (A.14) and writing W ∼ DΓ̄. All internal lines are

associated to ordinary 1/� propagators.

By direct calculation it turns out that diagrams (2d) and (2e) cancel one against the

other whereas the rest, after performing D-algebra, leads to the following one-loop effective

– 7 –
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φφ
hh

(a)

∂ Γ

φφ
hh

t1

(b)

∂ Γ

φφ
hh

(d)

W W

φφ
hh

(e)

W W

φφ
hh

(c)

W

W

φφ
hh

(f)

WW

t3

φ

φ
h

(g)

W

W

t2

Figure 2. One-loop diagrams contributing to the mixed sector.

action

Γ
(1)
div =

1

2g2

∫
d4xd2θ̄ W̄α̇ ∗ W̄α̇ +

∫
d4xd4θ Φ ∗ Φ̄

[
1 + 18hh S

]
(3.1)

+h

∫
d4xd2θ Φ3

∗ + h

∫
d4xd2θ̄ Φ̄3

∗

+iFαβ

∫
d4xd4θ θ̄2 ∂ α̇

α Γ̄βα̇ ∗Φ ∗ Φ̄
[
t1 + 36 (hh − hht1)S

]

+t2F
2

∫
d4xd4θ θ̄2 Γ̄αα̇ ∗ Γ̄αα̇ ∗ Φ̄

3
∗

+F2

∫
d4xd4θ θ̄2 W̄α̇ ∗ W̄α̇ ∗Φ ∗ Φ̄

[
t3 + 36 (hh − hht3 − ht2)S

]

+F2

∫
d4xd4θ θ̄2 Φ ∗ (∇∇2Φ)2∗

[
h3 + (12 g2h− 12 g2t1h+ 3 g2t21h+ 6hh4)S

]

+F2

∫
d4xd4θ θ̄2 ∇∇2Φ ∗Φ ∗ Φ̄2

∗

[
h4 + (72hhg2t1 − 36hhg2t21 + 648h3hh

2

+324h2h
2
− 144hhh4 + 36hh5)S

]

+F2

∫
d4xd4θ θ̄2 Φ ∗ Φ̄4

∗

[
h5 + (108hh

2
g2t21 + 216hh

2
h4 − 144hhh5)S

]
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φφ
hh

(a)

∇ 2φ

∇ 2φ φ

h

g, t1 g, t1

(b)

φ

h4
h

(c)

∇ 2φ

∇ 2φ

φφ

φ

φ

h h

h, h3, h3

h, h3, h3

(d)

φ

φ

φ

φ

h

h
t1

g, t1

(e)

φφ
hh

(f)

φφ

h4

φφ
h5

h

(g)

φ

φ

φ

φ

φ

φ

φ

h

h

h

t1

t1

(h)

φ

φ

φ
h

h

h

(i)

φφ

h4

φ

φ

φ
hh

(l)

φφ

h5

Figure 3. One-loop diagrams contributing to the matter sector.

where S is given in (2.18).

Few comments are in order. First of all we note that the matter quadratic term does

not receive gauge contributions. This is consistent with the results of ref. [18] where it was

already shown that the abelian gauge quadratic term does not correct by terms proportional

to g2. The superpotential does not renormalize thanks to the non-renormalization theorem

which holds also in the NAC case. A similar behavior is exhibited by the t2-term which,

at least at one-loop, seems to be protected from renormalization. However, in this case we

do not have any argument for expecting such a protection beyond one-loop.
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We now proceed to the renormalization of the theory by defining renormalized coupling

constants as

Φ = Z−
1
2 ΦB Φ̄ = Z̄−

1
2 Φ̄B (3.2)

g = µ−ǫZ−1
g gB h = µ−ǫZ−1

h hB h̄ = µ−ǫZ−1
h̄
h̄B

t1 = Z−1
t1
t1 B t2 = µ−ǫZ−1

t2
t2 B t3 = Z−1

t3
t3 B

h3 = µ−ǫZ−1
h3
h3 B h4 = µ−2ǫZ−1

h4
h4 B h5 = µ−3ǫZ−1

h5
h5 B

where powers of the renormalization mass µ have been introduced in order to deal with

dimensionless renormalized couplings. In order to cancel the divergences in (3.1) we set

Z = Z̄ = 1− 18
hh

(4π)2
1

ǫ

Zhh = h+ 27
h2h

(4π)2
1

ǫ
≡ h+

h(1)

ǫ

Z h̄h̄ = h+ 27
hh

2

(4π)2
1

ǫ
≡ h+

h
(1)

ǫ

Zh3 h3 = h3 +
27hhh3 − 12 g2h+ 12 g2ht1 − 3 g2ht21 − 6hh4

(4π)2
1

ǫ
≡ h3 +

h
(1)
3

ǫ

Z t1 t1 = t1 + 18 (3 t1 − 2)
hh

(4π)2
1

ǫ
≡ t1 +

t
(1)
1

ǫ

Z t2 t2 = t2 +
27 t2hh

(4π)2
1

ǫ
≡ t2 +

t
(1)
2

ǫ

Z t3 t3 = t3 +
54 t3hh− 36hh + 36ht2

(4π)2
1

ǫ
≡ t3 +

t
(1)
3

ǫ

Zh4 h4 = h4 +
180hh h4 − 36hh5 + 36hhg2t21 − 72hhg2t1 − 648h3hh

2
− 324 (hh)2

(4π)2
1

ǫ

≡ h4 +
h

(1)
4

ǫ

Zh5 h5 = h5 −
108hh

2
g2t21 + 216hh

2
h4 − 189hhh5

(4π)2
1

ǫ
≡ h5 +

h
(1)
5

ǫ
(3.3)

We have chosen to renormalize the chiral and the antichiral superfields in the same way,

although this is not forced by any symmetry of the theory. We note that divergences can

be cancelled without renormalizing the NAC parameter Fαβ . Therefore, the star product

does not get deformed by quantum corrections.

We compute the beta-functions according to the general prescription

βλj
= −ǫ αj λj − αj λ

(1)
j +

∑

i

(
αi λi

∂λ
(1)
j

∂λi

)
(3.4)
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where λj stands for any coupling of the theory and αj is its naive dimension. Reading the

single pole coefficients λ
(1)
j in eq. (3.3) we finally obtain

βg = 0

βh =
54h2 h

(4π)2

βh =
54hh

2

(4π)2

βh3 =
1

(4π)2
(
54hhh3 − 24 g2h+ 24 g2ht1 − 6 g2ht21 − 12hh4

)

β t1 =
36

(4π)2
(3 t1 − 2)hh

β t2 =
54 t2hh

(4π)2

β t3 =
1

(4π)2
(
108 t3hh− 72hh + 72ht2

)

βh4 =
1

(4π)2

(
72hhg2t21 − 144hhg2t1 − 1296h3hh

2
− 648 (hh)2 + 360hhh4 − 72hh5

)

βh5 =
1

(4π)2

(
−216hh

2
g2t21 − 432hh

2
h4 + 378hhh5

)
(3.5)

4 Three-flavor case: renormalization and β-functions

In this section we consider the case of the NAC U∗(1) gauge theory in interaction with

matter in the adjoint representation of the gauge group and in the fundamental represen-

tation of a flavor SU(3) group. Its action is given in (2.13). We note that in the case

h1 = h2, h1 = h2, setting Fαβ = 0 turns off all the interactions and we are back to the

ordinary free U(1) N = 4 SYM theory. On the other hand, the noncommutative nature of

the star product allows us to construct even in the ”abelian” case non-trivial interacting

theories which can be studied as NAC deformations of N = 4 SYM. More generally, we

will consider h1 6= h2, h1 6= h2 in order to take into account also marginal deformations.

We perform one-loop renormalization of the theory. Comparing to the case of a single

chiral field, we note that the couplings are exactly of the same kind but dressed by flavor

except for the extra coupling h̃3 which in the previous case was trivially zero. Therefore, in

order to evaluate divergent diagrams, it is sufficient to generalize the previous calculations

to take into account non-trivial flavor factors and add possible new contributions arising

from the contraction of a h̃3 vertex with the rest. Since the h̃3 vertex has the same structure

of the vertex obtained when first order expanding the ∗-product in the superpotential (see

vertices (5f) and (5h) in (A.30)), the topologies of divergent diagrams are still the ones in

figure 2, 3.

From a direct evaluation of all the contributions, for the one-loop divergent part of

the effective action we find (in order to shorten the notation we define h12 ≡ h1 − h2 and

h12 ≡ h1 − h2)
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Γ
(1)
div =

1

2g2

∫
d4xd2θ̄ W

α̇
W α̇ +

∫
d4xd2θ ΦiΦ̄

i
[
1 + h12h12S

]
(4.1)

+h1

∫
d4xd2θ Φ1Φ2Φ3 − h2

∫
d4xd2θ Φ1Φ3Φ2

+h1

∫
d4xd2θ̄ Φ̄1Φ̄2Φ̄3 − h2

∫
d4xd2θ Φ̄1Φ̄3Φ̄2

+h̃3F
αβ

∫
d4xd4θ θ̄2∇αΦ1 ∗ ∇βΦ2 ∗ Φ3

+F2

∫
d4xd4θ θ̄2Φ1∇

2Φ2∇
2Φ3

[
h3 +

(
12 g2h12 − 6g2t1h12 + 3g2t21h12 + 3h12h

(6=)
4

)
S
]

+iFαβ

∫
d4xd4θ θ̄2∂ α̇

α Γ̄βα̇ΦiΦ̄
i
[
t1 + 2h12h12(1− t1)S

]

+t2F
2

∫
d4xd4θ θ̄2Γ̄αα̇Γ̄αα̇Φ̄1Φ̄2Φ̄3

+F2

∫
d4xd4θ θ̄2W̄ α̇W̄α̇ΦiΦ̄

i
[
t3 + 2

(
h12h12 − h12h12t3 − h12t2

)
S
]

+F2

∫
d4xd4θ θ̄2

∑

i

∇2ΦiΦiΦ̄
iΦ̄i

{
h

(=)
4 +

[
(h3 + h̃3)h12h

2
12 − 2h1h2h

2
12 − 2h12h12 h

(6=)
4

+h12h5 −
1

2

(
h̃2

3 + 2(h1+h2)h̃3

)
h

2
12

]
S

}

+F2

∫
d4xd4θ θ̄2

∑

i<j

∇2ΦiΦjΦ̄
iΦ̄j
{
h

(6=)
4 +

[
8h12h12g

2t1 − 4h12h12g
2t21 − 8h12h12h

(=)
4

+2(h2
1 + h2

2)h
2
12 + 2(h3 + h̃3)h12h

2
12 +

(
h̃2

3 + 2(h1+h2)h̃3

)
h

2
12 − 4h12h12h

(6=)
4 + 4h12h5

]
S
}

+F2

∫
d4xd4θ θ̄2 ΦiΦ̄

iΦ̄1Φ̄2Φ̄3
[
h5 +

(
4h12h

2
12g

2t21 + 2h12h
2
12h

(=)
4

+3h12h
2
12h

(6=)
4 − 6h12h12h5

)
S
]

As in the previous case the gauge sector of the theory does not receive divergent contribu-

tions. Moreover, the quadratic matter action does not receive contributions from quantum

gauge fields.

Renormalization is still performed by using renormalized field functions and coupling

constants as defined in (3.2). Choosing the same renormalization constants for the three

(anti)chiral superfields, in minimal subtraction scheme we set

Zi = Z̄i = 1−
h12h12

(4π)2
1

ǫ

Zh1 = Zh1
= Zh2 = Zh2

= Z
h̃3

= 1 +
3h12h12

2(4π)2
1

ǫ
(4.2)

Zh3h3 = h3 +
3h3h12h12 − 24g2h12 + 12g2t1h12 − 6g2t21h12 − 6h12h

(6=)
4

2(4π)2
1

ǫ

Zt1t1 = t1 + (3t1 − 2)
h12h12

(4π)2
1

ǫ
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Zt2t2 = t2 +
3h12h12t2
2(4π)2

1

ǫ

Zt3t3 = t3 +
3h12h12t3 − 2h12h12 + 2h12t2

(4π)2
1

ǫ

Z
h
(=)
4
h

(=)
4 = h

(=)
4 +

1

(4π)2

[
2h12h12h

(6=)
4 − h12h5 + 2h12h12h

(=)
4 + 2h1h2h

2
12

−(h3 + h̃3)h12h
2
12 +

1

2

(
h̃2

3 + 2(h1+h2)h̃3

)
h

2
12

]
1

ǫ

Z
h
( 6=)
4
h

(6=)
4 = h

(6=)
4 +

1

(4π)2

[
4h12h12g

2t21 − 8h12h12g
2t1 − 2(h2

1 + h2
2)h

2
12 + 8h12h12h

(=)
4

+6h12h12h
(6=)
4 − 4h12h5 − 2(h3 + h̃3)h12h

2
12 −

(
h̃2

3+2(h1+h2)h̃3

)
h

2
12

]1
ǫ

Zh5h5 = h5 −
1

(4π)2

(
4h12h

2
12g

2t21 + 2h12h
2
12h

(=)
4 + 3h12h

2
12h

(6=)
4 −

17

2
h12h12h5

)
1

ǫ

Finally, applying the prescription (3.4) we find the beta-functions of the theory

βg = 0

βh1 =
3

(4π)2
h1h12h12 βh1

=
3

(4π)2
h1h12h12

βh2 = −
3

(4π)2
h2h12h12 βh2

= −
3

(4π)2
h2h12h12

β
h̃3

=
3

(4π)2
h12h12h̃3

βh3 =
1

(4π)2

(
3h12h12h3 − 24g2h12 + 12g2t1h12 − 6g2t21h12 − 6h12h

(6=)
4

)

βt1 =
2

(4π)2
(3t1 − 2)h12h12

βt2 =
3

(4π)2
h12h12t2

βt3 =
1

(4π)2
(
6h12h12t3 − 4h12h12 + 4h12t2

)

β
h
(=)
4

=
1

(4π)2

[
4h12h12h

(6=)
4 + 4h12h12h

(=)
4 − 2h12h5 + 4h1h2h

2
12

−2(h3 + h̃3)h12h
2
12 +

(
h̃2

3 + 2(h1+h2)h̃3

)
h

2
12

]

β
h
( 6=)
4

=
1

(4π)2

[
8h12h12g

2t21 − 16h12h12g
2t1 + 16h12h12h

(=)
4 + 12h12h12h

(6=)
4 − 8h12h5

−4(h2
1 + h2

2)h
2
12 −4(h3 + h̃3)h12h

2
12 − 2

(
h̃2

3 + 2(h1+h2)h̃3

)
h

2
12

]

βh5 = −
1

(4π)2

(
8h12h

2
12g

2t21 + 4h12h
2
12h

(=)
4 + 6h12h

2
12h

(6=)
4 − 17h12h12h5

)
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5 Finiteness, fixed points and IR stability

We now discuss the previous results for different choices of the chiral couplings. We recall

that we are working with euclidean theories which are not subject to hermitian conjuga-

tion constraints. In particular, Φ and Φ̄ are independent real superfields as well as the

corresponding couplings h and h.

We first consider the case of the theory with a single chiral superfield. Referring

to the results (3.1) we note that all the divergences are proportional to (powers of) the

superpotential coupling h. Therefore, setting h = 0 the theory turns out to be one-loop

finite and we have no need to add all possible couplings in order to get a renormalizable

theory. Precisely, the following action

S =
1

2g2

∫
d4xd2θ̄ W̄ α̇ ∗ W̄α̇ +

∫
d4xd4θ Φ ∗ Φ̄ + h

∫
d4xd2θ̄ Φ̄3

∗ (5.1)

is perfectly consistent at quantum level and one-loop finite.

Conversely, if we set h = 0 while keeping the chiral superpotential on we have few

divergent contributions surviving in (3.1). Making the minimal choice of setting to zero

all the extra couplings which do not get renormalized we find that the following action is

one-loop renormalizable

S =
1

2g2

∫
d4xd2θ̄ W̄ α̇ ∗ W̄α̇ +

∫
d4xd4θ Φ ∗ Φ̄ + h

∫
d4xd2θ Φ3

∗

+h3F
2

∫
d4xd4θ θ̄2 Φ ∗ ∇2Φ ∗ ∇2Φ (5.2)

but not finite. This result is consistent with what has been found [7–9] for the NAC

ungauged Wess-Zumino model.

The fact that the theory is finite when we turn off the superpotential in the chiral

sector while tolerating a superpotential for antichirals but not viceversa is a manifestation

of the asymmetry between the chiral and the antichiral sectors induced by the star product.

We now discuss the spectrum of fixed points for the most general case where all the

couplings are turned on. As already seen, the theory is one-loop finite when we set h = 0,

independently of the value of the other couplings. Therefore, h = 0 defines an eight

dimensional hypersurface of fixed points.

However, h = 0 does not exhaust the spectrum of fixed points. In fact, by a quick

look at the beta functions in (3.5) we can easily see that taking h 6= 0 there is another

hypersurface of fixed points given by

h = h5 = t2 = 0

2h4 + g2(t1 − 2)2 = 0 (5.3)

In any case, from the requirement for βh, βh to vanish we are forced to set either h or h

equal to zero. This is due to the fact that, despite the non-trivial gauge/matter interaction,

the matter quadratic term does not get corrections from gauge quantum fields. As a

consequence, we do not have non-trivial h(g), h(g) functions which describe marginal flows

as it happens in ordinary non-abelian SYM theories.
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h

h

Figure 4. Renormalization group trajectories near the h = h = 0 fixed point. Arrows indicate the

IR flows.

We study the stability of fixed points and compare the present situation with the

corresponding anticommutative case, that is an ordinary abelian SYM theory perturbed

by a cubic superpotential

h

∫
d4xd2θ Φ3 + h

∫
d4xd2θ̄ Φ̄3 (5.4)

where hermiticity requires h to the complex conjugate of h.

In the ordinary case the theory is simply a free gauge theory plus a massless Wess-

Zumino model. The corresponding one-loop β-functions go like βh ∼ |h|
2h and βh ∼ |h|

2h.

Therefore, the only fixed point of the theory is h = h = 0. The RG trajectories are drawn

in figure 4 where only the first and third quadrants have to be considered (hh = |h|2 ≥ 0).

Therefore, the origin corresponds to an IR stable fixed point.

We now consider the NAC case described by the general action (2.12). The great

number of coupling constants forbids plotting global RG trajectories; however, we can

study the IR behavior of the theory on lower dimensional hypersurfaces by temporarily

keeping a certain number of couplings fixed. First of all, since βg = 0 we can sit on

hypersurfaces g = ḡ where ḡ is a small constant. Moreover, we can identify the flows

associated to βh and βh as a closed subset of equations.

The main difference compared to the ordinary case is that now h and h are two real

independent couplings. This has two consequences: 1) The spectrum of fixed points is now

given by the two lines h = 0 and h = 0; 2) Since the product hh can be either positive or

negative we need extend the study of RG trajectories to the whole (h, h) plane.

The configuration of RG trajectories is given in figure 4 where arrows indicate the IR

flow. It is easy to see that the two axes h = 0 and h = 0 are lines of unstable fixed points.
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In particular, we see that in this case the origin is neither an infrared nor an ultraviolet

attractor. This is in contrast with the ordinary case where, as discussed above, the origin

is an IR stable fixed point. The different behavior of the two theories can be traced back

to the different hermiticity conditions which constrain the (anti)chiral coupling constants.

Although the failure of the origin to be an IR attractor is conclusive, we can restrict the

couplings to have the same sign (then studying the flows in the first and third quadrants)

and investigate whether we can identify a region in the parameter space for which the

origin is an infrared attractor.

The (h, h) = (0, 0) fixed point spans a seven dimensional hypersurface of fixed points

corresponding to all possible values of the other couplings. We study RG trajectories on

this hypersurface by linearizing in the rest of the couplings.

The system of linearized equations we consider is µdhi/dµ = βhi
, i = 3, 4, 5, while the

remaining equations decouple and have stability matrix with positive eigenvalues. Keeping

(h, h) slightly away from the fixed point, the eigenvalues of the stability matrix for the

subset (h3, h4, h5) are approximatively

ρ1 = −1.608hh ρ2 = 232.788hh ρ3 = 560.82hh (5.5)

We see that the matrix vanishes at the fixed point but, as soon as we move away from

the fixed point, there is at least one negative eigenvalue in any quadrant of the (h, h)-

plane. The corresponding eigenvector represents an instability direction and leads to the

conclusion that the origin is never an IR attractor whatever the range for (h, h) is.

We now consider the more interesting case of three flavors. As already stressed, the

theory (2.13) describes a NAC generalization of the abelian N = 4 SYM theory and theories

obtained from it by adding marginal deformations.

We remind that the ordinary abelian N = 4 SYM theory is a free theory, then nec-

essarily finite. Marginal deformations can be added of the form (we write them in a form

which can be easily generalized to the NAC case)
∫
d4xd2θ (h1Φ1Φ2Φ3 − h2Φ1Φ3Φ2) +

∫
d4xd2θ̄

(
h1Φ̄

1Φ̄2Φ̄3 − h2Φ̄
1Φ̄3Φ̄2

)
(5.6)

which break supersymmetry down to N = 1. In our notation N = 4 supersymmetry is

recovered for h1 = h2 (h1 = h2 are the hermitian conjugates). The deformed theory is

no longer finite since a divergent self-energy contribution to the (anti)chirals appears at

one-loop, proportional to h12h12. It is easy to see that the free N = 4 theory is a stable IR

fixed point.

We now study what happens in the NAC case. Looking at the results (4.1) the first

important observation is that the gauge beta-function is identically zero and all the other

divergences are proportional to powers of h12 and h12. Therefore, setting h1 = h2 and

h1 = h2 kills all the divergences and the theory is one-loop finite. It follows that, at least

at one-loop, the NAC deformation does not affect the finiteness properties of the N = 4

SYM theory.

It is not difficult to provide general arguments for extending this analysis to all loops.

First of all, the gauge sector cannot receive loop corrections at any perturbative order. In

– 16 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
9

fact, for dimensional and symmetry reasons [18] in the U∗(1) case the only local background

structure which might be produced is the quadratic term
∫
W̄ α̇W̄α̇ with no powers of

the NAC parameter in front. As already discussed, any loop diagram that we can draw

contributing to the gauge sector is proportional to powers of Fαβ and then necessarily finite.

In the mixed and matter sectors, the constraints on the maximal power of Fαβ that we

can have in divergent diagrams imply that at least one chiral or one antichiral vertex from

the superpotential needs be present at order zero in the NAC parameter, therefore carrying

a coupling h12 or h12. Then, it is a matter of fact that in the case of equal couplings all

contributions vanish.

Therefore, on general grounds we conclude that the U∗(1) deformation of the abelian

N = 4 SYM theory is all loop finite.

Exactly marginal deformations are obtained by adding marginal operators to the action

which do not affect the vanishing of the beta-functions. In our case, taking h1 6= h2 and/or

h1 6= h2 means adding marginal operators. However, not all of them turn out to be exactly

marginal, at least at one-loop. In fact, in order to have vanishing beta-functions away from

the symmetric point h12 = h12 = 0 we need require either

h1 = h2 (h̃3 + 2h1) = 0 (5.7)

or

h1 = h2 t2 = h5 = 0 g2(t21 − 2t1 + 4) + h
(6=)
4 = 0 (5.8)

In order to study the stability of the fixed points we can perform an analysis similar to

the previous one with the obvious substitutions h → h12 and h → h12 plus the additional

couplings which were not present in the one-flavor case.

The flow equations for h12 and h12 still decouple from the rest of the system and we

can first study the IR behavior of the theory restricted to the (h12, h12) plane. With the

suitable substitutions figure 4 is still valid and provides two lines h12 = 0 and h12 = 0 of

unstable fixed points.

Restricting the range of (h12, h12) within the first and third quadrants and neglecting t2
which has a trivial β-function, we are left with a system of seven equations whose stability

matrix can be studied in a neighborhood of the origin. The corresponding eigenvalues are

approximatively

ρ1 = 3h12 h12 ρ2,3 = 6h12 h12 ρ4 = −0.626h12 h12

ρ5 = 3.936h12 h12 ρ6 = 11.674h12 h12 ρ7 = 25.017h12 h12 (5.9)

Again, the appearance of at least one negative eigenvalue for any choice of the couplings

leads to the conclusion that theN = 4 theory is not an IR attractor. This result is similar to

what happens in the ordinary non-abelian SYM theories with gauge group SU(N ≥ 3) [24],

even if the two theories are not directly mappable one onto the other.

6 Conclusions

Deforming half of the Grassmannian part of the superspace could have bad consequences

on the quantum behavior of field theories defined on it. In fact, due to the partial breaking
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of supersymmetry the non-trivial cancellation between bosonic and fermionic divergences

is not guaranteed anymore and we can expect a worsening in the UV behavior of the

theories. Equivalently, the deformation introduces a “bad” dimensionful parameter which

might induce the appearance of dimensionful momentum integrals with positive degree

of superficial divergence. However, for all models investigated so far, a careful analysis

has revealed that consistent completions of NAC deformations of ordinary theories can

always be found for which renormalizability is preserved thanks to some global symmetries

inherited from the parent theory.

In this paper we have continued on this line of investigation by performing the one-

loop renormalization of U∗(1) SYM theories with matter in the adjoint representation of

the gauge group, motivated by the idea of finding NAC generalizations of ordinary SYM

with extended supersymmetry. In general, the actions are not simply obtained from the

ordinary ones by deforming the products, but contain suitable completions given in terms

of all classical marginal operators which respect a given set of global symmetries.

We have first considered a SYM theory with a single chiral field self-interacting through

a cubic superpotential. Then, we have extended our analysis to the case of three matter

fields interacting through a cubic superpotential which depends on four coupling constants,

h1, h2, h1, h2. For h1 = h2 and h1 = h2 the classical action exhibits a global SU(3) sym-

metry and can be interpreted as a NAC generalization of the ordinary N = 4 SYM theory.

More generally, for h1 6= h2 and/or h1 6= h2 it looks like the NAC generalization of marginal

deformations of N = 4 SYM.

Since in the ordinary case N = 4 SYM is finite, one of the questions we have addressed

is whether finiteness survives in the NAC case. We note that, while in the ordinary U(1)

case finiteness is a trivial statement, being the theory free, its NAC generalization is highly

interacting and the question becomes interesting. We have found that at one-loop the

theory with h1 = h2, h1 = h2 is indeed finite. Moreover, based on general arguments we

have provided a proof for the all-loop finiteness of the theory.

More generally, we have considered theories in the presence of marginal deformations.

In this case UV divergences arise which in general set the theory away from a fixed point. In

the parameter space we have studied the spectrum of fixed points and the renormalization

group flows. We have found that, while in the ordinary N = 4 case h1 = h2, h1 = h2 is an

IR stable fixed point (free theory), in our case nonanticommutativity makes all the fixed

points unstable. This is due to the fact that in the presence of extra marginal operators

proportional to Fαβ , the parameter space gets enlarged and new lines of instability are

allowed. Even if our analysis is based on one-loop calculations, we have already enough

information for drawing qualitative conclusions on the effects that this kind of geometrical

deformations have on the RG flows: NAC theories resemble the non-abelian SU(N ≥ 3)

ordinary theories for which N = 4 SYM is neither an IR nor an UV attractor.

We focused only on massless theories but it is easy to convince that the addition of a

mass term should not change the main features of the theories.

In order to simplify the analysis, we considered the U∗(1) case. From the point of view

of studying how renormalization works these theories are not too trivial. In fact, as already

stressed, they are highly interacting. Therefore, the results obtained on the finiteness in a

subspace of the parameter space and, more generally, on the role of nonanticommutativity

on their UV and IR behavior are actually not a priori expected.
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However, considering this example we have lost the non-trivial coupling between non-

abelian and abelian superfields which is a peculiar feature of the NAC gauge theories. It

would be then very interesting to consider the non-trivial SU(N )⊗U(1) case and investigate

whether the obtained results survive. In particular, it would be interesting to address the

question of finiteness. In fact, we expect that at one-loop the gauge sector would not receive

divergent corrections since matter loops would cancel ghost loops, still giving β
(1)
g = 0. In

the matter sector new contributions proportional to g2 would arise for the two and higher

point functions. Therefore, as in the ordinary non abelian cases, we expect non-trivial

surfaces of fixed points of the form h12 = h12(g), h12 = h12(g). The non-trivial question is

whether this is only a one-loop effect or it would arise as an actual feature of the whole

quantum lagrangian.

From a stringy point of view, our results are a further step towards a better under-

standing of the dynamics of D3-branes in the presence of non-vanishing RR forms and

provide few hints for constructing gravity duals.
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A Background field method and Feynman rules

In this appendix we collect all one-loop Feynman rules obtained from the actions (2.12),

(2.13) by applying the generalized background field method developed in [11] for NAC

super Yang-Mills theories with chiral matter in a real representation of the gauge group.

Gauge sector. We work in gauge antichiral representation [21] for covariant derivatives

and perform the quantum-background splitting according to

∇α = ∇∇α = Dα , ∇α̇ = eV∗ ∗ ∇∇α̇ ∗ e
−V
∗ = eV∗ ∗ e

U
∗ ∗ D̄α̇ e−U

∗ ∗ e−V
∗ (A.1)

The derivatives transform covariantly with respect to quantum transformations

eV∗ → eiΛ∗ ∗ e
V
∗ ∗ e

−iΛ
∗ , eU∗ → eU∗

∇A → eiΛ∗ ∗ ∇A ∗ e
−iΛ
∗ , ∇∇A → ∇∇A (A.2)

with background covariantly (anti)chiral parameters, ∇∇αΛ = ∇∇α̇Λ = 0, and background

transformations

eV∗ → eiλ∗ ∗ e
V
∗ ∗ e

−iλ
∗ , eU∗ → eiλ∗ ∗ e

U
∗ ∗ e

−iλ
∗

∇A → eiλ∗ ∗ ∇A ∗ e
−iλ
∗ , ∇∇A → eiλ∗ ∗ ∇∇A ∗ e

−iλ
∗ (A.3)

with ordinary (anti)chiral parameters D̄α̇λ = Dαλ = 0.
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The classical action

Sgauge =
1

2g2

∫
d4xd2θ̄ W

α̇
W α̇ (A.4)

for the gauge field strength defined in eq. (2.10) is invariant under gauge transforma-

tions (A.2) and (A.3). Background field quantization consists in performing gauge-fixing

which explicitly breaks the (A.2) gauge invariance while preserving manifest invariance of

the effective action and correlation functions under (A.3). Choosing as in the ordinary

case the gauge-fixing functions as f = ∇∇
2
∗ V , f = ∇∇2 ∗ V the resulting gauge-fixed action

has exactly the same structure as in the ordinary case [21] with products promoted to star

products [11]. In Feynman gauge it reads

Sgauge + SGF + Sgh =

−
1

2g2

∫
d4xd4θ

[
eV∗ ∗ ∇∇

α̇
∗ e−V
∗ ∗D2(eV∗ ∗ ∇∇α̇ ∗ e

−V
∗ ) + V ∗ (∇∇

2
D2 +D2∇∇

2
) ∗ V

]

+

∫
d4xd4θ

[
c′c− c′c+ · · · + bb

]
(A.5)

where ghosts are background covariantly (anti)chiral superfields and dots stand for higher

order interaction terms.

What we have reviewed so far holds for any NAC gauge theory, independently of the

choice of the gauge group. Now, we focus on the case we are interested in, that is U∗(1)

and determine the Feynman rules.

Working out the quadratic part of the action from (A.5) we find

S + SGF → −
1

2g2

∫
d4xd4θ V ∗ �̂ ∗ V (A.6)

where we have defined

�̂ = �cov − iW̃
α ∗ ∇∇α − iW

α̇
∗ ∇∇α̇ , �cov =

1

2
∇∇

αα̇
∗ ∇∇αα̇ (A.7)

We find convenient to rescale the gauge field as

V → gV (A.8)

Therefore, from the rescaled action we determine the covariant propagator

〈V (z)V (z′)〉 =
1

�̂
δ(8)(z − z′) (A.9)

where z ≡ (xαα̇, θα, θ̄α̇).

Expanding this expression in powers of the background fields it turns out that the

covariant propagator contains an infinite number of background-quantum interaction ver-

tices. Precisely, we write

1

�̂
≃

1

�cov
+

1

�cov
∗
(
iW̃α ∗ ∇∇α + iW

α̇
∗ ∇∇α̇

)
∗

1

�cov
+ · · · (A.10)
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and further expand 1/�cov. Since by direct inspection one can easily realize that terms

proportional to W̃α and W
α̇

never enter one-loop divergent diagrams, we approximate

1

�̂
≃

1

�cov
(A.11)

and study in detail its expansion.

On a generic superfield in the adjoint representation of the gauge group we have

�cov ∗ φ ≡
1

2
[∇

αα̇
, [∇αα̇, φ]∗]∗

= �φ− i[Γ̄αα̇, ∂αα̇φ]∗ −
i

2

[
(∂αα̇Γ̄αα̇), φ

]
∗
−

1

2

[
Γ̄αα̇,

[
Γ̄αα̇, φ

]
∗

]
∗

(A.12)

where � = 1
2∂

αα̇∂αα̇ is the ordinary scalar kinetic term.

Expanding the ∗-products and neglecting terms which never enter our calculations

we find

�cov = � + 2iFαβ(∂αΓ̄γγ̇)∂β∂γγ̇ −F
2(∂αΓ̄γγ̇) (∂2Γ̄γγ̇) ∂α +F2(∂αΓ̄γγ̇) (∂αΓ̄γγ̇) ∂2 + · · ·

(A.13)

Inverting this expression we finally have

1

�cov
=

1

�
(A.14)

−
1

�
2i Fαβ(∂αΓ̄γγ̇) ∂β∂γγ̇

1

�
−

1

�
4 Fαβ(∂αΓ̄γγ̇) ∂β∂γγ̇

1

�
Fηρ(∂ηΓ̄

σσ̇) ∂ρ∂σσ̇
1

�

+
1

�
F2 (∂αΓ̄γγ̇) (∂2Γ̄γγ̇) ∂α

1

�
−

1

�
F2 (∂αΓ̄γγ̇) (∂αΓ̄γγ̇) ∂2 1

�
+ · · ·

Here we recognize the ordinary bare propagator 1/� plus a number of gauge interaction

vertices. We note that all the interactions are proportional to the NAC parameter, as a

peculiar feature of the U∗(1) theory.

Matter sector. In background field method we define full (anti)chiral superfields in the

adjoint representation of the gauge group as

Φ = Φ , Φ = eV∗ ∗Φ ∗ e
−V
∗ = eV∗ ∗ (eU∗ ∗ φ ∗ e

−U
∗ ) ∗ e−V

∗ (A.15)

where Φ ≡ eU∗ ∗ φ ∗ e
−U
∗ and Φ are background covariantly (anti)chirals.

Under both quantum (A.2) and background (A.3) transformations the full (anti)chiral

superfields transform covariantly with parameters Λ and λ, respectively.

Under quantum transformations background covariantly (anti)chiral fields transform

as Φ′ = eiΛ∗ ∗Φ ∗ e
−iΛ
∗ , Φ

′
= eiΛ∗ ∗Φ ∗ e

−iΛ
∗ . Under background transformations they both

transform covariantly with parameter λ, Φ′ = eiλ∗ ∗Φ ∗ e
−iλ
∗ , Φ

′
= eiλ∗ ∗Φ ∗ e

−iλ
∗ .

Focusing the discussion on the U∗(1) gauge group we now derive propagators and

interaction vertices for matter in the actions (2.12), (2.13) where we have performed the

rescaling (A.8). Since one-loop divergent contributions are at most quadratic in the NAC

parameter, we list only Feynman rules entering these kinds of terms.
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We split the actions (2.12), (2.13) according to

S ≡ Sgauge + Smatter = Sgauge +

∫
d4xd4θ Φ̄ ∗ Φ + Sint (A.16)

where Sgauge is given in (A.5) and Sint is the rest of the matter actions in (2.12), (2.13)

subtracted by the quadratic part.

We concentrate on Smatter. Its quantization proceeds as usual. We first expand the full

covariant quadratic action in terms of background covariantly (anti)chiral fields (see (A.15))

∫
d4xd4θ Φ̄ ∗ egV ∗Φ ∗ e−gV

=

∫
d4xd4θ

{
Φ̄Φ + gΦ̄[V,Φ]∗ +

g2

2
Φ̄[V, [V,Φ]∗]∗ + · · ·

}
(A.17)

The first term in this expansion is the kinetic term for background covariantly (anti)chiral

fields. In particular, ghosts fall in this category so the same procedure can be applied to

the action (2.17), as well. The remaining terms give rise to ordinary interactions with the

quantum field V .

We perform the quantum-background splitting

Φ→ Φ + Φq , Φ̄→ Φ̄ + Φ̄q (A.18)

which allows to rewrite

Smatter =

∫
d4xd4θ Φ̄qΦq + S′int (A.19)

where S′int collects all the interaction vertices coming from Sint after the splitting (A.18)

plus the extra interactions from (A.17).

Adding source terms ∫
d4xd2θ jΦq +

∫
d4xd2θ̄ Φ̄qj (A.20)

and performing the gaussian integral in Φq, Φ̄q, the quantum partition function reads

Z[j, j] = ∆∗ ∗ e
S′

int(
δ
δj

, δ

δj
)
exp

[
−

1

2

∫
d4xd4θ

(
j ∗

1

�−
∗ j + j ∗

1

�+
∗ j
)]

(A.21)

where we have defined

�+ = �cov − iW̃
α ∗ ∇α −

i

2
(∇α ∗ W̃α)

�− = �cov − iW
α̇
∗ ∇α̇ −

i

2
(∇

α̇
∗W α̇) (A.22)

and ∆∗ is the functional determinant

∆∗ =

∫
DΦqDΦ̄q exp

∫
d4xd4θ Φ̄qΦq (A.23)

From the generating functional (A.21) we have two types of perturbative contributions,

one from the expansion of ∆∗ and one from the expansion of exp (S′int).
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As explained in [11, 21], ∆∗ provides an additional, one-loop contribution to the gauge

effective action coming from matter/ghost loops. The corresponding Feynman rules can

be worked out by applying the “doubling trick” procedure [11, 21]. As a result, one-loop

Feynman rules are obtained which can be formally read from the following effective action

∫
d4xd4θ Tr

{
ξ�ξ +

1

2

[
ξD2(∇∇

2
−D

2
)ξ + ξ(�− −�)ξ

]}
(A.24)

where ξ , ξ are unconstrained quantum fields with ordinary scalar propagator

〈ξ(z)ξ̄(z′)〉 = −
1

�
δ(8)(z − z′) (A.25)

and the first vertex must appear once, and only once, in a one-loop diagram.

The second type of contributions come from the expansion of exp (S′int) in (A.21). The

covariant matter propagators in this case are

〈Φ(z)Φ̄(z′)〉 = −
1

�−
δ(8)(z − z′)

〈Φ̄(z)Φ(z′)〉 = −
1

�+
δ(8)(z − z′) (A.26)

which can be expanded according to

1

�−
≃

1

�cov
+

1

�cov
∗

(
iW̄ α̇ ∗ ∇α̇ +

i

2
(∇

α̇
∗ W̄α̇)

)
∗

1

�cov
+ · · ·

1

�+
≃

1

�cov
+

1

�cov
∗

(
iW̃α ∗ ∇α +

i

2
(∇α ∗ W̃α)

)
∗

1

�cov
+ · · · (A.27)

and contain an infinite number of interaction vertices between background gauge fields and

quantum matter fields. As explained in the text, at one-loop divergent contributions arise

only from the 1
�cov

part of the propagators. Therefore, we will set

1

�±
≃

1

�cov
(A.28)

and further expand it as done in (A.14).

Interaction vertices are obtained by working out the actual expression of S′int after

the background-quantum splitting (A.18). We list only the ones which effectively enter

the evaluation of divergences. To keep the discussion more general we consider the three-

flavor case. The one-flavor vertices are then easily obtained by dropping flavor indices and

neglecting terms that, without flavors, vanish for symmetry reasons.

We begin by considering the contributions (A.17) coming from the quadratic action.

The only contributing vertex is (5a) in figure 5 where V is quantum and Φ or Φ̄ are

background. We then consider the t1, t2, t3 interaction terms in (2.13). Because of the

presence of a θ̄2 the ∗-products are actually ordinary products. The quantization proceeds

by performing the splitting (A.18) on the (anti)chirals and expanding the connections and
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the field strength as follows

Γ̄αα̇ → −∇αe
−V∇∇α̇e

V → Γ̄αα̇ −∇α

[
∇∇α̇, V

]
∗
+

1

2
∇α

[[
∇∇α̇, V

]
∗
, V
]
∗

∂βα̇Γ̄ α̇
α −→ ∂βα̇Γ̄ α̇

α − ∂βα̇∇∇α

[
∇∇

α̇
, V
]
∗

W α̇ → −i∇2e−V∇∇α̇e
V →W α̇ − i∇

2
[
∇∇α̇, V

]
∗
+
i

2
∇2
[[
∇∇α̇, V

]
∗
, V
]
∗

(A.29)

Collecting only the contributions which may contribute at one-loop we obtain vertices

(5b, 5d) where gauge is only background and vertex (5c) where Φ or Φ̄ are background.

We note that they all exhibit a gauge-invariant background dependence. We then turn

to the pure matter interaction terms. By splitting (anti)chiral superfields we find vertices

(5f − 5m).

Collecting all the results, the explicit expressions for the vertices are

(5a) −2ig θ̄α̇FαβV (∂αΦi)∂βα̇Φ̄i

(5b) it1 θ̄
2Fαβ(∂ α̇

α Γ̄βα̇)ΦiΦ̄
i

(5c) −igt1 θ̄
2Fαβ(∂αα̇DβD̄

α̇V )ΦiΦ̄
i

(5d) t2 θ̄
2F2Γ̄αα̇Γ̄αα̇Φ̄1Φ̄2Φ̄3

(5e) t3 θ̄
2F2W

α̇
W α̇ΦiΦ̄

i

(5f) h12 Φ1Φ2Φ3 − (h1 + h2)F
αβ∂αΦ1∂βΦ2Φ3 −

1

2
h12 F

2∂2Φ1∂
2Φ2Φ3

(5g) h12 Φ̄1Φ̄2Φ̄3 − (h1 + h2)F
αβ∂αΦ̄1∂βΦ̄2Φ̄3

(5h) h̃3 θ̄
2Fαβ∇αΦ1∇βΦ2Φ3 + h̃3 θ̄

2F2∇2Φ1∇
2Φ2Φ3

(5i) h3 θ̄
2F2∇2Φ1∇

2Φ2Φ3

(5l) h
(=)
4 θ̄2F2∇2ΦiΦiΦ̄

iΦ̄i ; h
(6=)
4 θ̄2F2∇2ΦiΦjΦ̄

iΦ̄j i < j

(5m) h5 θ̄
2F2ΦiΦ̄

iΦ̄1Φ̄2Φ̄3 (A.30)

We have not explicitly indicated background or quantum matter fields since it should be

clear from the context. For instance, ΦiΦ̄
i stands for ΦiΦ̄

i
q or (Φi)qΦ̄

i.

We note that all vertices containing quantum gauge fields are at least of order Fαβ .

Hence vertices with quantum gauge fields and order F2 could be only employed in tadpole
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V

∂ φ

∂ φ
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φ

∂ Γ

φ
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(b)

p∇ ∇ V

φ

φ
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(c)

φΓ

φ

Γ

φt2

(d)

φW

W φ
t3

(e)

φ

φ

φ
h

(f)

φ

φ

φ
h

(g)

∇φ

∇φ

φh3

(h)

∇ 2φ

∇ 2φ

φh3

(i)

φ∇ 2φ

φ φh4

(l)

φφ

φ

φ

φh5

(m)

Figure 5. Vertices from the actions (2.12), (2.13).

diagrams which vanish in dimensional regularization. This is the reason why in vertices

(5d, 5e) we take gauge fields to be only background.

The expressions for the vertices of the one-flavor case can be obtained from the previous

ones by dropping flavor indices and setting

h1 = −h2 = h/2 , h1 = −h2 = h/2

h
(=)
4 = h4 , h

(6=)
4 = 0 (A.31)

Moreover, we need take into account extra symmetry factors that arise when specifying

quantum or background matter. For instance, the term Φ3 in (5f) would give rise to

3Φ2Φq. The vertex (5h) is absent for trivial symmetry reasons.
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[1] S. Ferrara and M.A. Lledó, Some aspects of deformations of supersymmetric field theories,

JHEP 05 (2000) 008 [hep-th/0002084] [SPIRES];
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